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Prins cyclization using an electron-rich benzaldehyde and a

homoallylic alcohol efficiently delivered the fully substituted

C-aryl tetrahydropyranoside of kendomycin.

Kendomycin (1, Fig. 1), a polyketide metabolite of the common

soil bacteria Streptomyces violaceoruber, has shown remarkable

potential for use as a medicinal agent since its initial isolation by

Funahishi and coworkers in 19961 and Bode and Zeeck’s

subsequent reisolation and structure determination by Mosher’s

ester and X-ray crystallographic analysis in 2000.2

Pharmacologically,1–3 kendomycin has shown impressive cytotoxi-

city against human breast, stomach, and liver carcinoma cell lines

(GI50 , 100 nM), as well as anti-bacterial activity against both

methicillin- and vancomycin-resistant Staphylococcus aureus.

Additionally, kendomycin exhibits anti-osteoporotic activity and

potent antagonism against the endothelin receptor.

Kendomycin’s potential as a medicinal agent and its demanding

structural topography have generated considerable interest in the

synthetic organic community. Synthetically challenging features of

this macrocyclic natural product include a fully substituted C-aryl

glycosidic core, bridged by a lipophilic ansa-polyketide chain

containing an (E)-trisubstituted olefin. The Lee group4 and the

Smith5 group have reported total syntheses of kendomycin.

Seminal investigations by Mulzer et al. developed much of the

chemistry of the natural product,6a–e and a number of other

groups have reported diverse synthetic approaches to this

fascinating compound.6

Our group7 and others8–10 have studied the Prins cyclization as a

convergent and highly diastereoselective means of synthesizing

tetrahydropyranols, such as that found in 1. Fig. 1 illustrates our

retrosynthetic strategy utilizing this approach. Tetrahydropyran

(THP) 2 was envisaged to arise from a Prins cyclization between

homoallylic alcohol and benzaldehyde components of roughly

equal complexity. This Prins approach would efficiently generate

three new stereocenters in a single synthetic transformation. While

the potential of the Prins cyclization is well precedented,7–10 its

scope and generality with highly substituted aromatic aldehydes

have not been fully developed. Our proposed strategy would

provide a concise assembly of the C-aryl pyranoside scaffold found

in 1, and it would extend the scope of the Prins reaction. Here we

present a successful application of the Prins cyclization as the key

step in the convergent synthesis of the fully substituted 2-aryl

tetrahydropyranol 2 found in kendomycin.

The homoallylic alcohol and benzaldehyde components for the

key Prins cyclizations were prepared from known compounds 4–6

(Scheme 1). Allylation of aldehyde 411 with Hoffmann’s boronate

512 forged (E)-homoallylic syn-alcohol 7 in excellent yield with

.95% diastereoselectivity.13,14 Acylation of known phenol 615

provided acetyloxy benzaldehyde 8.

These readily available components were then studied in the key

Prins cyclization reaction. Treatment of homoallylic alcohol 7 and

benzaldehyde 8 with BF3?OEt2 and HOAc in hexane generated

tetrahydropyran acetate 9a and alcohol 9b as single diastereomers

in 65% combined yield. This Prins cyclization efficiently delivered a

C-aryl glycoside containing 19 of the 29 carbons of 1 and six of its

nine stereocenters. Reductive cleavage of the acetates and

subsequent bromination of the arene then provided target THP

2 in 35% yield over four steps from aldehyde 4. An analogous

Prins cyclization with alcohol 7 and sulfonyloxy benzaldehyde 10

generated tetrahydropyrans 11 in excellent yield; however, the

sulfonate group could not be hydrolyzed under basic methanolysis

conditions without extensive decomposition, in accordance with a

similar observation by the Willis group.9b

Our mechanistic rationale for the key Prins cyclization is shown

in Fig. 2. Condensation of alcohol 7 and benzaldehyde 8 with

BF3?OEt2 and HOAc generates (E)-oxocarbenium ion 12a.

Nucleophilic capture from an equatorial trajectory in the expected

chair-like transition state at the C(4)-position of cation 12a delivers

THP 9a. With a poorly nucleophilic anion, trapping and

cyclization to THP 9 become slow relative to oxonia-Cope

equilibration to the higher energy, non-conjugated cation 12b.

Because each oxocarbenium ion 12 preserves the inherited

stereochemistry, trapping either entity at the C(4) position leads

to THPs 9. Slower trapping, however, provides oxocarbenium ion

12b increased opportunity to undergo an undesired fragmentation

or hydrolysis to generate aldehyde 4.9b,e Alcohol 7 reacts
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Fig. 1 Retrosynthetic analysis of kendomycin.
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preferentially with newly formed aldehyde 4 in a Prins cyclization,

leading to side-chain exchange product 13. Yields of THP 13 were

used to estimate the amount of aldehyde 4 formed during the Prins

cyclization reactions.

The successful Prins cyclizations depicted in Scheme 1 required

the optimization of several parameters to control the problematic

fragmentation. First, we found that attenuation of the phenolic

electrons with an electron-withdrawing group was necessary to

suppress the fragmentation of oxocarbenium ion 12b.9b

Acetylation (8) and sulfonylation (10) of the phenol successfully

accomplished this requirement.16 A second consideration was the

competency of the trapping agent. Initial cyclization studies using

TFA in DCM as solvent9 generated the trifluoroacetate analogs of

9a and 11a in only 25–35% yields, while side-chain exchange

products such as 13 (35–55%) and decomposition dominated the

product mixtures. We hypothesize that the poor nucleophilicity of

the trifluoroacetate anion prevents efficient trapping of cations 12

and thus increases the population of the kinetically competitive

and counterproductive side processes, such as fragmentation.

Replacing TFA with AcOH as a trapping agent and using

BF3?OEt2 as a promoter strongly suppressed the production of

THP 13 to ,10%. Finally, we reasoned that a less polar solvent

should further disfavor fragmentation. Changing the solvent from

DCM to non-polar n-hexane increased the yields of THPs 9 and

11 to 65% and 86%, respectively. The optimized reaction

conditions are heterogeneous, as the benzaldehyde and THP

product are essentially insoluble in the hexane solvent. The low

solubilities of the aldehydes 8 and 10 result in their low reaction

concentrations, which presumably play a role in reducing the

formation of side product 13.

The tetrahydropyran 15 was an intermediate in Smith and

coworkers’ synthesis of kendomycin.5 We set out to prepare THP

15 using our Prins cyclization approach, both to secure the

structure of 2 and to complete a formal synthesis of kendomycin

(Scheme 2). Introduction of the terminal olefin of 15 was first

pursued using a Prins cyclization with an unsaturated analog of

alcohol 7.17 The Prins reaction between benzaldehyde 10 and the

diene alcohol,17 however, generated a complex product mixture.

Scheme 1 (a) i. n-hexane, 0 uC, 36 h; ii. NaOH, H2O2, 91%; (b) AcCl,

pyr., 88%; (c) BF3-OEt2, AcOH, n-hexane, 0 uC to rt, 12 h; (d) DIBAL-H,

278 uC, DCM, 91%; (e) Br2, CHCl3 65%.

Fig. 2 Mechanistic rationale for cyclizations to THPs 9 and 13.

Scheme 2 (a) TBSOTf, 2,6-lutidine, 80%; (b) H2, Pd/C, 89%; (c) Br2,

propylene oxide, CH2Cl2, 75%; (d) i. 2-(NO2)-C6H4-SeCN, PBu3; ii. H2O2,

THF, 73%.
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Apparently the remote alkene reacts with the oxocarbenium ion

intermediates (e.g. Fig. 2). Undaunted by this result, we employed

a five step procedure to convert THPs 9 to Smith and coworkers’

intermediate 15. Silylation of diol 14, available by reductive

cleavage of acetates 9, and subsequent hydrogenolysis of the

benzyl group provided a primary alcohol. After arene bromina-

tion,18 the alcohol was eliminated using Grieco and coworkers’

procedure19 to deliver alkene 15 in 35% yield from THPs 9. The

spectral data for 15 matched that reported by the Smith group,

and this correlation completes a formal synthesis of kendomycin.

In conclusion, we have successfully synthesized the C-aryl

glycoside found in kendomycin with a highly diastereoselective

Prins cyclization. Attenuation of the electron rich benzaldehyde

and the use of acetic acid as a trapping agent were necessary to

suppress problematic side reactions. The selective generation of

three new stereocenters in the Prins cyclization facilitated the short

and highly convergent assembly of the kendomycin fragment.

Support was provided by the National Cancer Institute (CA-
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